skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Badgeley, J. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Paleotemperature reconstructions from ice cores are mixed signals of changes in climate and ice‐surface elevation. A common, temperature‐based paleoaltimetry method suggests these signals can be disentangled by comparing two proxy locations with similar climates. The difference between the records is assumed to be due to elevation, which is estimated by scaling the temperature difference by a lapse rate. We investigate the uncertainty associated with this approach using a case study of the Antarctic Ice Sheet during the Last Glacial Maximum. From an ensemble of climate simulations, we extract modeled temperatures at locations of real ice cores. We find uncertainty on the order of hundreds of meters that results from spatial heterogeneity in non‐adiabatic temperature change, which itself stems in part from elevation‐induced atmospheric circulation change. Our findings suggest that caution is needed when interpreting temperature‐based paleoaltimetry results for ice sheets. 
    more » « less